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Abstract

We analyze the effects of flat and bumpy top, fractional and internally inhomogeneous cloud
layers on large area-averaged thermal radiative fluxes. Inhomogeneous clouds are generated by a
new stochastic model: the tree-driven mass accumulation process (tdMAP). This model is able to
provide stratocumulus and cumulus cloud fields with properties close to those observed in real
clouds. A sensitivity study of cloud parameters is done by analyzing differences between 3D fluxes
simulated by the spherical harmonic discrete ordinate method and three ‘‘standard’’ models likely to
be used in general circulation models: plane-parallel homogeneous cloud model (PPH), PPH with
fractional cloud coverage model (FCPPH) and independent pixel approximation model (IPA). We
show that thermal fluxes are strong functions of fractional cloud coverage, mean optical depth, mean
geometrical thickness and cloud base altitude. Fluctuations of ‘‘in-cloud’’ horizontal variability in
optical depth and cloud-top bumps have negligible effects in the whole. We also showed that PPH,
FCPPH and IPA models are not suitable to compute thermal fluxes of flat top fractional
inhomogeneous cloud layer, except for completely overcast cloud. This implies that horizontal
transport of photon at thermal wavelengths is important when cloudy cells are separated by optically
thin regions.
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1. Introduction

Clouds exhibit fluctuations of optical characteristics (local extinction, effective radius,
ice crystal shape) and geometrical characteristics (top bumps, gap or fractional coverage,
shape or structure) at different scales. How these spatial inhomogeneities of cloud properties
affect the radiative transfer is one of the major issues of atmospheric radiation theory.

Global climate models (GCMs) generally assume clouds to have constant optical
properties with flat top and base: this is the plane-parallel homogeneous cloud model
(PPH). In this way, two-stream approximations lead to visible radiative fluxes as functions
of the cloud layer’s optical depth, single scattering albedo and asymmetry parameter,
whereas thermal fluxes are computed from the hypothesis that cloud layer is a ‘‘grey’’ body,
where emissivity is function of optical depth. At best, GCM radiative transfer takes into
account gaps between clouds by introducing fractional cloud coverage and linear mixing of
‘‘clear’’ and ‘‘cloudy’’ computations, where ‘‘cloudy’’ computations are done with optical
properties that vary with wavelength (e.g. one set for each spectral band). Moreover,
sensitivity studies have shown that doubling CO2 concentration in the atmosphere produces
a positive radiative forcing of 4 W/m2 leading to an increase of 2–6 K of the surface
temperature, depending on the GCM cloud parameterization. This implies radiative transfer
effects of a percent or so. Since clouds play an important role in the radiative equilibrium of
the earth-atmosphere system budget, cloud inhomogeneities, in addition to fractional cloud
coverage, have to be taken into account in radiative transfer algorithms.

In addition to the fact that atmospheric radiative fluxes have to be accurate, their
computation should be as efficient as possible. Consequently, two principal ways are
proposed to take into account of cloud inhomogeneity effects in the radiative transfer. On
the one hand, inhomogeneity effects are parameterized in the framework of the well
established plane-parallel homogeneous cloud theory (Chandrasekar, 1960; Maedor and
Waever, 1980; Lenoble, 1985). One can cite the effective thickness approximation (ETA)
of Cahalan et al. (1994a), the effective homogeneous cloud approximation (EHCA) of
Szczap et al. (2000a,b,c) and the other renormalization technique of Cairns et al. (2000).
On the other hand, radiative transfer algorithms are proposed to take into account cloud
inhomogeneities, where the main objective is the best ratio between accuracy and CPU
time. One can cite the independent pixel approximation (IPA) formalized by Cahalan et al.
(1994b), the Gamma-IPA by Barker et al. (1996), and, more recently, neural network
techniques (Chevallier et al., 1998; Krasnopolsky and Chevallier, 2003). However, for
both these approaches, cloud parameters pertinent to radiative transfer have to be identified
through a rigorous sensitivity study.

Many studies point out effects of broken cloud parameters on their radiation fields in
visible wavelengths (Aida, 1977; Davies, 1978; Davis et al., 1978; Gube et al., 1980;
Schmetz, 1984; Kobayashi, 1993; Jonas, 1994; McKee and Cox, 1974; Bréon, 1992;
Barker, 1994; Zuev and Titov, 1995). Study of cloud inhomogeneity effects at thermal
wavelengths are less numerous. Some of them take into account longwave scattering
processes (Takara and Ellingson, 1996), others the effects of clouds shapes and spatial
distribution (Harshvardhan and Weinman, 1982; Ellingson, 1982; Killen and Ellingson,
1994; Han and Ellingson, 1999; Nasunaga and Nakajima, 2001). All these studies have
used idealized clouds with cylindrical or cubic shapes. But these simple representations of
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clouds are not satisfactory representations of internal fluctuations of optical depth as well as
fluctuations of geometrical depth (top bumpiness) or of more realistic cloud shapes.

Some studies use clouds generated by large eddy simulations or LES (Barker et al.,
1998a,b, 1999; Fu et al., 2000; Kassianov and Kogan, 2002). But their number of
realizations is generally small because of a large need in memory and computational
resources. Others described 3D cloud fields obtained from satellite imagery (O’Hirok
and Gauthier, 1998; Chambers et al., 2001). Fractal and multifractal techniques have
been used to analyze scaling and self-similarity properties of real clouds or cloud
fields (Lovejoy, 1982; Cahalan, 1989; Duroure and Guillemet, 1990; Davis et al.,
1994; Marshak et al., 1997; Carvahlo and Silva Dias, 1998; Gotoh and Fujii, 1998)
but also in order to generate inhomogeneous (clouds) fields (Lovejoy and Mandelbrot,
1985; Schertzer and Lovejoy, 1991; Davis et al., 1991). One of the more realistic yet
quite simple stochastic cloud models is the ‘‘bounded cascade’’ cloud model (Cahalan
et al., 1994a,b; Marshak et al., 1995b). This model yields overcast horizontal
fluctuations of the optical depth whose probability distribution function (PDF) is
quasi-lognormal and its spectral exponent (absolute slope b of the wavenumber
spectrum in log–log axes) can be made close to the frequently observed value of
5/3. But its visual aspect shows an artificial dyadic structure and, furthermore, this
model does not yield broken clouds without drastic modification. Even then, the
results are not compelling visually.

We therefore present a new stochastic cloud model, the tree-driven Mass Accumulation
Process or ‘‘tdMAP’’, suitable to generate realistic overcast and broken clouds in a unique
framework. Another aim is to quantify the geometrical (shape or structure, top bumpiness)
and optical (fluctuations of optical depth) cloud parameters of thermal radiative fluxes in
order to propose future parameterizations of cloud inhomogeneity effects in radiative
algorithms in GCMs.

The organization of this paper is as follows. In Section 2, an overall picture of the
tdMAP model is presented. In Section 3, it is shown how tdMAP parameters can be
adjusted to generate realistic overcast and broken clouds. In Section 4, we present results
of simulations of thermal radiative transfer done with spherical harmonic discrete
ordinate method (SHDOM) by Evans (1998). Conditions of simulation are presented;
radiative transfer simulations on top flat and bumpy one-layer cloud are shown.
Comparisons are done between thermal fluxes computed with SHDOM and ‘‘approx-
imate’’ radiative algorithms PPH, FCPPH and IPA. These different comparisons lead a
better interpretation of the interactions between clouds and radiation. Conclusions are
provided in Section 5.

2. Presentation of the tdMAP model

Simulation of complex media is a pressing problem and a challenging one. Clouds are
examples of such a task. The media we are interested in are inherently random. So, in this
context, a medium can be seen as a realization of a stochastic process. We shall use a
parameterized model, in such a way as to make a given type of signal or field correspond a
given set of parameters.
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Our objective here is to simulate 2D horizontally optical depth fluctuations of overcast
and broken cloud field. Clouds exhibit fluctuations of their microphysical and macro-
physical properties at different (averaging) scales. The cloud-radiation community
traditionally distinguishes two kinds of cloud inhomogeneities: ‘‘geometrical inhomoge-
neity’’ (gaps between clouds showing different shapes or structures, cloud top bumps) and
‘‘internal inhomogeneity’’ characterized by fluctuation of optical properties (extinction,
effective radius, etc.) inside the cloud.

The ‘‘internal’’ cloud fluctuations show a scale-invariant regime, defined by the range
of scales where wavenumber spectra and other spatial statistics follow powers laws. Davis
et al. (1994, 1996) estimated this range for three specific stratocumulus events: a few
meters to a few tens (possibly of) kilometers, with an absolute spectral slope b = 1.1–1.7.
At smaller scales (down to about 4 cm), Davis et al. (1999) found enhanced variability of
liquid water content in clouds that was traced by Jeffery (2001) to inertial effects in the
small-scale turbulence. The lower limit is in fact not defined due to the limited resolution
of the instruments. The theoretical lower limit is molecular dissipation scale of a few
millimeters or larger, depending of the turbulence intensity. On the other hand, the upper
limit of this range (low frequency) defines the ‘‘integral scale’’ where the spectrum
becomes flat (decorrelation occurs). This ‘‘integral scale’’ varies from one cloud field to
another. For example, Cahalan and Snider (1989) found that wavenumber spectrum E(k) of
liquid water path in marine stratocumulus follows a power law from about 500 km to
somewhat less than 500 m from satellite data analysis. The 500-m break is, however, an
apparent effect due to cloud-radiation interactions called ‘‘radiative smoothing’’ (Marshak
et al., 1995a; Davis et al., 1997). In our work, the lower limit will be the cloud pixel size,
and the upper limit, or the ‘‘integral scale’’, will be close to the horizontal extent of our
synthetic clouds. Therefore, the ‘‘integral scale’’ is limited by our computation resources
(CPU time and memory size) when radiative transfer simulations are running.

The statistical theory of turbulence proposed by A. Kolmogorov was the departure of
an enormous amount of work. Let us refer to Frisch (1995) for a complete exposition.
Supporting directly or inspired by this progress in turbulence theory, two kinds of models
were proposed: first, the multiplicative cascade model (Kolmogorov, 1962; Novikov and
Stewart, 1964) and then Fractional Brownian Motions or FBMs (Mandelbrot and Van
Ness, 1968). Our model, called ‘‘tree-driven mass accumulation process’’ (tdMAP), pays
tribute to those both classes of mathematical models.

We start with a wavelet like decomposition of the FBM (Benassi, 1995) we shall call a
multiresolution analysis. Self-similar properties are a main feature in Komogorov theory.
FBM, which we denote X(x) enjoys this property, which is expressed by the equation

ðX ðkxÞÞxaRDJðkHX ðxÞÞxaRD ð1Þ

where J is the statistical equality, x is the spatial position, k is the scale, D = 1,2,3 is the
spatial dimension and H is the so-called Hurst parameter (H = 1/2 for Brownian motion).
Following Benassi (1995), Benassi et al. (1997) and Benassi and Deguy (1999), we obtain
the wavelet decomposition of the FBM, given by

X ðxÞ ¼
X

kajD

2$AjAH/kHnk ð2aÞ
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Fig. 1. Time-scale resolution of wavelet transforms and thebtree-structureH extracted from it. ThisbtreeH is

composed of nodes (points on the figure) from which leave branches (two in this case). To each time-frequency

resolution cell correspond a node of the tree.

Fig. 2. Example of imposed ‘‘tree-structure’’ modified by ( p, q, b) ‘‘action’’ parameters. Number of cascades:

j = 3. (a) ‘‘Classical’’ tree-structure: all nodes and branches are kept ( p= 1) and from each node leave two

branches (partition parameter b= 2). (b) At each node, branches (and sub-nodes and sub-branches) are pruning

with probability p < 1. Pruned branches and nodes are dotted and hatched respectively. (c) Effect of random

spatial shift of each node on the general ‘‘tree-structure’’. Original and ‘‘random shifted’’ tree are respectively

dotted et solid line. (d) Example of tree structure with ‘‘branching’’ rate b= 3: from each node leave three

branches.
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with

/kH ðxÞ ¼ /H ð2jx$ kÞ: ð2bÞ

It is optimal, because nk is a family of independent and identically distributed normal
random variables. Function/H is specific to each value ofH. jD is the 2

D-adic net (see Fig. 1,

Fig. 3. Explanation of ‘‘overlapping’’ process.

Fig. 4. Explanation of the generation of 1D simple signal with tdMAP model (H = 0, F= 1, n= 1 or $ 1, b= 2,

p= 1, jmax=2, q= 0). One begins by defining a ‘‘tree structure’’. On each node of the tree, at position k and scale j,

are defined the ‘‘masses’’ (function F, random variable n, Hurst parameter H ) and the ‘‘actions’’ (Bernoulli

parameter p, ‘‘branching’’ rate b). Finally, one sums of the mass along the tree to generate the signal.
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where ‘‘positions’’ k are contingent on ‘‘scale’’ j). Furthermore, jD may be seen as a tree or
arborescence. This tree naturally encodes points in the space ( j, k) of the phenomenon.

But, at the same time, we can ‘‘decorate’’ (just like a Christmas tree) each of its nodes
( j, k) with different ‘‘objets’’ and ‘‘actions’’ (generally mathematically identifiable). This
tree jD allows us to take into account the cascade phenomenon. This new framework leads
us to present the basic form of tdMAP model as a generalization of the wavelet
decomposition of above FBM; tdMAP model can thus be written as

X ðxÞ ¼
X

kaTp

2$jHkFkðxÞnk: ð3Þ

If jD is the preceding tree, jaN is the height in jD of the node k=( j, k) and kaZD are
integer-valued vectors. k corresponds to the spatial position x = k/2 j, corresponding to node
k. Now Tp is a random sub-tree of jD determined by the parameter p (definition of p further
in the text). F is called the ‘‘morphlet’’ and commonly here, Fk(x) =F(2

jx$ k); nk are
random variables; Hk is now a local Hurst parameter, commonly taken as a constant here.

Let us give more details on the tdMAP parameters. Tp is a ‘‘pruned’’ tree. The
‘‘pruning’’ is due to a Bernoulli (with parameter p) percolation on jD. We recall that the
Bernoulli distribution is a discrete distribution having two possible outcomes labeled g = 0
and g = 1 in which g = 1 (‘‘success’’) occurs with probability p and g = 0 (‘‘failure’’) occurs

Fig. 5. (a) Illustration of the tdMAP model for tree values of Bernoulli parameter p (1, 0.9 and 0.8, respectively).

Hurst parameter is set to H = 0.5 and space dimension D = 1. For p= 1, it is indistinguishable from fractional

Brownian motion (Benassi et al., 1997). (b) Same as Fig. 3a, but space dimension D= 2. The basic shape of the

morphet (a Gaussian) can be seen clearly at the largest scales and the smallest p.
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with probability 1$ p, where 0V pV 1 is the Bernoulli parameter. If p= 1, all nodes and
branches of the tree are kept (see Fig. 1a). If not, each branch is removed with probability
1$ p. The Bernoulli parameter thus allows us to generate fractional cloud coverage
without using an ad hoc threshold technique (see Fig. 2b).

To better simulate cloud fields, we need some enrichments. So we add new ‘‘objets’’
and ‘‘actions’’ on the nodes of Tp. We define action Sq where parameter q indicates the
intensity of the action. For example, action Sq can control how the support of the morphlet
F is horizontally shifted. Let us give the definition of the support of the morphlet F. Let X
be the definition domain of the morphlet F: X=[$ 1,1]D, where D is the space dimension.
If D = 2, F(x,y):R2!R. Let Supp(F ) be the support of the morphlet F. Supp(F ) is the set
of all points (x, y) which satisfy the condition |F(x, y)|>0. For example, q = 1.5 implies
morphlet F is randomly and independently shifted by its support diameter times 1.5. It is
interesting to control how the support of the morphlet F is horizontally shifted in order to
remove the dyadic structure of the simulated signal (Fig. 2c).

If Supp(F )oX, there is ‘‘no overlapping’’, which is one condition in the present paper.
But in general case, Supp(F )KX, and leads to an ‘‘overlapping’’ process. The over-
lapping process consists in dilating the support of morphlet F at node k=( j, k) (see Fig. 3).
This action gives smoother simulated signals.

Now let us briefly explain how to realize a broken cloud field with fractional cloud
coverageC, whereC is cloudy area in percent. It can be done in different ways, most notably
by modifying the geometry of the tree. For example, we can modify the ‘‘branching’’ rate

Fig. 6. (a) Illustration of the tdMAP model for tree values of Hurst parameter H (0.8, 0.5 and 0.2, respectively).

Bernoulli parameter is set to p= 1. (b) Same as Fig. 4a, but space dimension D = 2.
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from the scale 0 to the ‘‘geometry’’ scale J0, with morphlet F is set to the null function. Let b
be the ‘‘branching’’ rate. The ‘‘branching’’ rate is the number of branches leaving form one
node of the tree (on Fig. 2a and d, b = 2 and b = 3, respectively). C can be expressed as

C ¼ pJ0bJ0D

bJ0D
¼ pJ0 ; ð4Þ

where p is the Bernoulli parameter, b the ‘‘branching’’ rate,D the space dimension and J0 the
‘‘geometry’’ scale. The control of the geometry of the tree with the help of the branching
number leads to control the cloudy areas number for a given fractional cloud coverage C

Fig. 7. Illustration of generalized fractional Brownian motion. Bernoulli parameter p= 1. H is now a function of

scale (H0 V scale < 4 = 0.2 and H4 V scale <l= 0.8 for left pictures and H0 V scale < 4 = 0.8 and H4 V scale <l= 0.2 for right

pictures). (a) Space dimension D = 1. (b) Space dimension D = 2. (c) Space dimension D = 3. The 3D pictures are

obtained by tomographic projection of the 3D field.
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imposed by p. So, for scales from 0 to J0, we are basically punching holes in the cloud cover;
for scales j>J0, we will be generating internal cloud structure. For this, we need ‘‘objects’’.

Now, we focus on the objects deposited along the tree-structure Tp we want to work
with (i. e. where we have not already applied null values). These objets are the function F,
the random variables n and the value of the Hurst parameter H. Since the optical depth
distribution of cloud field is, by essence, positive value, morphlet F and random variables
n must be positive. Fig. 4 shows the building of a very simple 1D (one dimension) signal
(H = 0, F = 1, n = 1 or $ 1, b= 2, p = 1, j= 2). One begins at the scale j = 0 and multiplies
the morphlet F defined on its support [$ 1,1] by the random variable n. Then one defines
two nodes at the scale j = 1. For each node is defined the scaled function F on its scaled
compact support. The above process is repeated iteratively until the final scale. In doing
so, we have defined a weighed value on each position on the tree. Finally, one makes the
sum of the weight mass along the tree branches to generate the final simulated signal.

Figs. 5–7 show some tdMAP signals generated in very general cases.

3. Choice of tdMAP parameters to generate stratocumulus and cumulus clouds fields

3.1. Stratocumulus field

The objective, in this section, is to generate horizontal 2D optical depth fields (x–y
axes), with uniform (optical and geometrical) properties along the vertical (z-axis). Table 1
gives the ‘‘ad hoc’’ tdMAP model parameters values to generate 2D (256% 256 pixels)
synthetic stratocumulus cloud fields sharing statistical properties with those of real
stratocumulus fields. Number of cascade steps is set to 8 (28 = 256). Self-similarity
properties of stratocumulus field from the upper to the lower scale are conditioned by
the Hurst parameter H. The relation between the Hurst parameter H and the absolute value
of the spectral slope b of the wavenumber spectrum in log–log axes is given by

b ¼ 2H þ 1 ð5Þ

Therefore, H is set to 0.25 in order to impose an absolute spectral slope of 1.5.
Moreover, since optical depth is a positive quantity, random variables nk and functions Fk

must be positively valued.

Table 1

tdMAP model parameters values to generate synthetic stratocumulus fields (see Section 3.1 for more

explanations)

Scale Objects Actions

F f H b p q

0 F1 – – 5 1 0

1 F1 eu 0.25 2 1 0.2

2 F1 eu 0.25 2 1 0.3

3 F1 eu 0.25 2 1 1.5

] ] ] ] ] ] ]
8 F1 eu 0.25 2 1 1.5
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The choice of function F1, given by

F1ðx; yÞ ¼ expð$ðx2=r2 þ y2=r2ÞÞ ð6Þ

is guided by the fact, on the one hand, this function yields theoretical results (which is
the focus of a future work), and on the other hand, standard deviation j can be
modulated and was set for the present study to 2.5. This makes the cloud edges
appropriately fuzzy at the smallest scale. Random variables n follow specific ‘‘log-
uniform’’ law defined by taking the exponential of a uniform variable u on [$ 1,1]. The
tdMAP model is a summation process and synthetic optical depth distribution is in this
case close to a log-normal distribution as is often observed in real stratocumulus fields
(Cahalan et al., 1994a). Moreover, this specific law enables us to avoid too extreme
values of the optical depth.

Spatial shift parameter q is varied from 0 to 1.5, as a function of scale (we recall
this means ‘‘morphlet’’ F1 is randomly and independently shifted by its support
diameter times 1.5 if Sq=.5). The main advantage of the parameter q is to eliminate
the artificial dyadic structure, without significantly changing the absolute spectral
slope b.

3.2. Cumulus fields

Let us focus now on how generate fractional cloud coverage. Table 2 gives the
‘‘ad-hoc’’ tdMAP model parameters values to generate 2D (256% 256 pixels)
synthetic cumulus cloud fields. Traditionally, one simulates overcast cloud fields with
a stochastic process and has recourse to a threshold to generate partial cloud
coverage. In the tdMAP framework, the cloud coverage generation process is
reversed. Firstly, at scale 0, we imposed the null morphlet with the Bernoulli
parameter set to p = 0.5 if the desired could coverage is C = 0.5 (50% of the tree
structure is destroyed). Then, the process explained above for stratocumulus genera-
tion in Section 3.1 is re-done the first scale ( j= 1) toward the finest scale j= 8, with

Table 2

tdMAP model parameter value to generate synthetic cumulus fields with partial cloud coverage (see Section 3.2

for more explanations)

Scale Objects Actions

F f H b p q

0 0 – – 5 0.5 0

1 F2 eu 0.25 2 1 0.2

2 F2 eu 0.25 2 1 0.3

3 F2 eu 0.25 2 1 0.3

4 F2 eu 0.25 2 1 0.3

5 F1 eu 0.25 2 1 1.5

] ] ] ] ] ] ]
8 F1 eu 0.25 2 1 1.5
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Bernoulli parameter p = 1. However, from the scale 1 to the scale 4, the function F2

is used given by

F2ðx; yÞ ¼ ðx2 $ 1Þðy2 $ 1Þ if x2 þ y2V1

F2ðx; yÞ ¼ 0 if x2 þ y2z1

8

<

:

ð7Þ

Therefore, cloud edges are smooth and clean at the largest scales.

3.3. Examples of tdMAP clouds

Figs. 8 and 9 show 2D horizontal fluctuations of optical depth of an overcast and
broken cloud fields, respectively. SHDOM computations at 0.55 Am wavelength for nadir

Fig. 8. (a) Example of overcast 2D optical depth field generated with tdMAP (mean optical depth = 10) and (b) its

normalized visible radiance fields simulated with SHDOM (solar angle h0 = 45j, nadir angle view, cloud

base = 0.5 km, mean geometrical depth = 300 m, pixel size = 12.5 m). The probability density function (PDF) is

represented in (c). Power spectrum in Fourier space is showed in (d) and estimated spectral slope is b= 1.5 below

the integral scale of 1 km where the slope goes from flat to decreasing. The spectrum becomes flat at the lower

limit because ‘‘branching’’ parameter n is set to 5 at the scale 0.
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radiances and solar illumination from 45j are also shown. Finally, two key statistical
properties are plotted (one-point PDF and wavenumber spectrum).

4. Effects of inhomogeneous clouds on thermal radiative fluxes

4.1. Conditions of radiative transfer and inhomogeneous clouds simulations

The main objective of the present study is to evaluate the effects of pertinent cloud
parameters on thermal radiative fields. Radiative transfer simulations are done with the
SHDOM algorithm (Evans, 1998) and a correlated k-distribution (Fu and Liou, 1992). The
U.S. standard atmosphere is assumed. Concentration of CO2, CH4 and NO2 are set to 330,
1.7 and 0.31 ppmv, respectively. Surface emissivity is set to unity; its temperature is set to
288.1 K. Main SHDOM parameters are: convergence criteria (10$ 4), discrete ordinates

Fig. 9. (a) Example of broken 2D optical depth field generated with tdMAP (mean overall optical depth = 5) and

(b) its normalized visible radiance fields simulated with SHDOM (conditions of simulations same as Fig. 5). The

probability density function (PDF) is represented in (c). Power spectrum in Fourier space is showed in (d) and

estimated absolute spectral slope is b= 1.7.
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(Nl, Nu = 16), cloud spatial resolution (Nx = 128, Ny= 128, Nz = 60), so the ‘‘adaptive grid’’
option is not used. Following Evans (1998), the error in absolute fluxes is less than 1%.

The 2D (128% 128 pixels) tdMAP cloud fields have horizontal extension of 64% 64
km. Each 0.5% 0.5 km cloud pixel is assumed to be vertically homogeneous up to a
cloud top height which is either held constant or varied with optical depth (as
explained further on). This pixel scale is considerably larger than in Figs. 5b and 6b
but enables the outer scale of 64 km to be commensurate with pixel size of GCMs
(even though finest cloud structures are not well resolved and therefore small scale
cloud inhomogeneity effects are not taken into account). Cloud temperature is assumed
equal to atmospheric temperature. Variable cloud parameters are cloud base altitude
(Zb = 1, 4 km), mean or constant geometrical thickness (h = 0.5, 1, 2, 4 km), mean
optical depth (s̄ = 2, 5, 10, 20), fractional cloud coverage (C = 0.25, 0.58, 1). The
distribution of cloud droplet size of is assumed to be log-normal with log-standard
deviation of 0.35 (Nakajima and Nakajima, 1995). Effective radius is set to 10 Am.
Fig. 10 shows the structure of three optical depth field structure with overall
(cloud + clear) mean optical depth equal to 5. Hereafter, they are called Cl1, Cl2 and
Cl3, respectively.

Fig. 10. Three optical depth fields (mean optical depth s̄=5) generated with tdMAP with different fractional cloud

coverage: (a) Cl1, C= 0.25%, (b) Cl2, C= 0.58% and (c) Cl3, C = 100%.
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In order to determine which cloud parameters are pertinent to thermal radiative transfer,
with the intention to interpret cloud-thermal radiation interactions, we compute differences
(or biases) between domain-average fluxes computed from 3D SHDOM model, consid-
ered as the benchmark, and from the ‘‘standard’’ approximate methods PPH, plane-parallel
homogeneous with fractional cloud (FCPPH) and IPA methods. These biases are written
yFDirection

3D-approx, where Approx = PPH, FCPPH or IPA, and Direction = up or down. Note that
where up indicates the bias estimated far above the cloud layer (altitude = 20 km) for flux
going into space, and down indicates the bias estimated below the cloud layer (altitude = 0
km) for fluxes going into ground. yF3D-PPH is due to the plane-parallel bias (Cahalan et al.,
1994a), fractional coverage and net horizontal transport of photons (Cahalan et al., 1994b;
Titov, 1998; Marshak et al., 1995a,b; Faure et al., 2001a,b). yF3D-PPH is mostly due to the
plane-parallel bias and net horizontal transport of photons. yF3D-IPA is only due to the net
horizontal transport of photons, which, beyond cloud fraction, is largely controlled by the
horizontal optical thickness s of cloud cells; on average this is s̄cell,hor = s̄ (0.5/h) for h in
km. The smaller s̄cell,hor, the larger the net horizontal fluxes.

So we are using 3D SHDOM model as the point of reference rather than the simplest
(PPH) approximation. This departs from tradition in 3D radiative transfer studies but has
the advantage of highlighting the potential GCM modeling error.

Simulations of thermal radiative transfer should be done in the complete [4–100] Am
wavelength interval. But we preferred to compute thermal radiative fluxes in the [10.2–
12.5] Am interval for two reasons. The first is to reduce computation time. The second is
because gas absorption is minimal for the atmospheric window. Therefore, cloud effects
are dominant for this wavelength interval and consequently thermal clouds inhomogene-
ities effects in the [10.2–12.5] Am band are the most representative of those in the full [4–
100] Am interval (Takara and Ellingson, 1996).

4.2. Flat top cloud case

Fig. 11 shows yFup,down
3D-PPH and yFup,down

3D-IPA for the cloud Cl1 and for two cloud base altitude
(Zb = 1, 4 km). yFup,down

3D-PPH is larger than yFup,down
3D-IPA within a ratio of around 10 and reaches a

maximum of F 1 W/m2. This implies, as for solar wavelengths (Cahalan et al., 1994b)
but, in a slighter way, plane-parallel bias is not negligible. On the other hand, yFup,down

3D-IPA is
very small (max of yFup,down

3D-IPA =F 0.3 W/m2), so we can assume the IPA method is suitable
to compute thermal radiative fluxes of overcast and flat top inhomogeneous clouds.

This implies also that horizontal transport of photon for overcast and flat top
inhomogeneous clouds is negligible for thermal wavelengths. As expected, the level
curves for IPA biases roughly follow lines of constant values for s̄cell,hor (with lower values
for higher s̄cell,hor).

Fig. 12 shows yFup,down
3D-PPH , yFup,down

3D-FCPPH and yFup,down
3D-IPA for the cloud Cl2 and for two

cloud base altitude (Zb = 1, 4 km). Whatever are the cloudy conditions, yFup,down
3D-PPH are

quite large (max of yFup,down
3D-PPH =F 16 W/m2) and they are of a constant sign that is easily

explained by the direct visibility (through holes) of (warm) ground from space and (cold)
space from ground. yFup,down

3D-FCPPH and yFup,down
3D-IPA are of same magnitude (max of yFup,down

3D-PPH

or yFup,down
3D-IPA =F 5 W/m2) but smaller than yFup,down

3D-PPH. It can be noticed that yFup,down
3D-IPA is

always positive and yFup,down
3D-IPA is always negative (the opposite of their ‘‘3D-PPH’’
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counterparts) whereas yFup,down
3D-FCPPH can be positive or negative and even equal to zero

within particular conditions (see Fig. 12(b)).
This implies that IPA and FCPPH methods can take into account of effects of gaps

between clouds only in a limited way and tend to over compensate the 3D effects. Therefore,
and because yFup,down

3D-FCPPH and yFup,down
3D-IPA are roughly equal in magnitude, yFup,down

3D-FCPPH and
yFup,down

3D-IPA are principally explained by horizontal transport of photons between clouds but
not for ‘‘internal horizontal fluctuation’’ of optical depth. For cloud coverage of 50%, these
results let us conclude that PPH method is not at all adapted to compute fluxes of fractional
inhomogeneous flat-top clouds. Moreover, and even through FCPPH and IPA methods
provide better results than PPH method, they are not sufficiently accurate methods to take
account of fractional clouds inhomogeneities in thermal wavelengths. Indeed, cloud
boundaries with clear areas drive significant horizontal fluxes that only the full 3D
calculation account for.

Fig. 13 shows yFup,down
3D-PPH , yFup,down

3D-FCPPH and yFup,down
3D-IPA for the cloud Cl3 (C = 25%) and for

two cloud base altitude (Zb = 1, 4 km). Whatever are the cloudy conditions, yFup,down
3D-PPH is

very large (max of yFup,down
3D-PPH =F 28 W/m2). yFup,down

3D-FCPPH and yFup,down
3D-IPA are of same

magnitude (max of yFup,down
3D-FCPPH or yFup,down

3D-IPA =F 3 W/m2) but are smaller than yFup,down
3D-PPH.

Our conclusions for cloud Cl2 carry over to cloud Cl3 unchanged.

Fig. 11. Contour of yFup,down
3D-approx (a) Approx = PPH, (b) Approx = IPA for cloud Cl3 (fractional cloud coverage

C= 100%), as a function of mean optical depth and geometrical thickness. Two cloud base altitudes are

represented: Zb = 1 km and Zb = 4 km. See text for more explanation.
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These results show, unsurprisingly, that the smaller the fractional cloud coverage, the
less accurate the PPH method becomes. They also show that FCPPH and IPA methods
are not adapted for fractional inhomogeneous flat top cloud (except for overcast cloud),
even if accuracy of both these methods does not depend on the cloud coverage
parameter. Figs. 11–13 also exhibit, in addition to the cloud coverage parameter, what
cloud parameters are pertinent to radiative transfer. As for visible wavelengths, optical
depth is an important parameter. One can notice that yFup,down

3D-PPH, yFup,down
3D-FCPPH and yFup,down

3D-IPA

are not only strong functions of optical depth (biases are very sensitive to optical depth
when optical depth is smaller than 10) but also to geometrical thickness. This is clearly a
cloud emissivity effect. Generally, the larger geometrical thickness is, the larger are the
values of yFup,down

3D-PPH, yFup,down
3D-FCPPH and yFup,down

3D-IPA. This is the effect of thermal gradients
inside the thicker clouds since as h increases (for given s̄) extinction goes down and
photons will tend to originate from deeper inside the cloud.

4.3. Bumpy cloud top case

Cloud base can generally be considered flat. On the other hand, cloud top is rather
bumpy, even through in stratocumulus at an inversion, the cloud base can be more variable
than the cloud top. Not many papers deal with relationships between top and base cloud

Fig. 12. Same as Fig. 10 but (a) Approx. = PPH, (b) Approx = FCPPH and (c) Approx. = IPA bias and for cloud

Cl2 (fractional cloud coverage C = 58%).
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height and their optical properties. Albrecht et al. (1990) demonstrated that, for the
adiabatic approximation for shallow layers, liquid water path (LWP) is proportional to the
square of the layer thickness. Minnis et al. (1992) observed same result by least-squares
regression fit to their data. As a first approximation (constant effective radius assumption),
optical thickness is proportional to the LWP. Therefore, we propose to prescribe cloud
geometrical thickness hi, j of each pixel (i, j) by

hi; j ¼ H0
si; j
smax

! "a

where si, j is the optical depth of pixel (i, j), smax the maximum of the cloud field optical
depth, a is an exponent and H0 is a constant value computed in such a way that mean
geometrical thickness of bumpy cloud equals geometrical thickness of the corresponding
flat-top cloud. Effects of clouds-top bumps are studied for two values of the a exponent,
a = 0.5 (distribution 1) proposed by Albrecht et al. (1990) and Minnis et al. (1992) and
a = 0.7 (distribution 2) proposed by Barker et al. (1998a,b). Fig. 14 shows geometrical
thickness histogram of bumpy cloud Cl2 with mean geometrical thickness equals 2 km.
From the same optical depth field (here cloud Cl2), distribution 2 of geometrical thickness
is less concentrated around the mean geometrical thickness than distribution 1. We

Fig. 13. Same as Fig. 10 but for cloud Cl1 (fractional cloud coverage C= 0.25%).
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therefore expect larger radiative effects for cloud bumps generated with distribution 2 than
with distribution 1.

Fig. 15 shows absolute bias yFup,down =Fup,down
bumpy top$Fup,down

flat top between 3D SHDOM
fluxes of bumpy and flat top clouds, as a function of mean optical depth and mean
geometrical thickness for distribution 2 (a = 0.7), for two cloud base altitudes (Zb = 1, 4
km) and cloud Cl2 (C = 0.58%). As expected, yFup,down are larger for distribution 2 than
for distribution 1 (not shown). These biases are, as a whole, rather small (Fup,down < 0.5
W/m2), except for Fup with mean geometrical thickness larger than 1 km
(max( | yFup|) = 4 W/m2).

yFup,down for cloud Cl1 and Cl3 are not shown but they are not larger than Fup,down for
Cl2. One can conclude that effects of cloud bumps are, as a whole, relatively small for
thermal radiative transfer. Therefore, thermal radiative properties of inhomogeneous
bumpy top clouds can be well approximated by inhomogeneous flat top cloud as long
as the mean geometrical thickness is not larger than 1 km. But we must remember that this
conclusion is based on the assumed relation between the local optical depth and
geometrical thickness (given by the distribution 1 or 2 in this paper) which is not as
simple for real clouds.

4.4. Discussion

Han and Ellingson (1999) and previous studies (Killen and Ellingson, 1994; Takara and
Ellingson, 1996) addressed cloud scattering geometrical effects on their thermal radiative

Fig. 14. Geometrical thickness histogram of bumpy cloud Cl2 (C= 0.58%). Mean geometrical depth h̄ = 2 km.

Distributions 1 and 2 correspond to a= 0.5 and a= 0.7, respectively.
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properties in a GCM context. All these studies make use of the cloud ‘‘flat-plate’’
approximation. In the flat-plate approximation, a single-layer cloud field of cloud fraction
C is simulated by a plane layer of infinitesimally thin but infinitively opaque (‘‘black’’)
clouds, with fractional coverage C. Therefore, this approximation neglects both cloud
geometry and longwave optical properties. In order to take into account of these scattering
or geometrical effects, they defined an effective cloud fraction Ceff, in such a way that this
effective cloud fraction generates the same flux for a given broken cloud. In doing so, their
problem is to determine the dependence of Ceff on different cloud parameters. These
studies found effective cloud fraction function of cloud shape (cylinder, truncated conical
clouds, etc.), aspect ratio, spatial distribution, scattering processes, thermal gradient
between cloud top and its base and cloud coverage. Our work is quite different from
these studies. In our paper, we analyze the difference between 3D fluxes simulated by
SHDOM and three standard methods likely to be used in GCMs (PPH, CFPPH and IPA
method). Since PPH, PPHCF and IPA fluxes are also computed with SHDOM model, and
not from clouds in the flat/black plate approximation, our flux differences (3D-PPH, 3D-
CFPPH, 3D-IPA) are also function of cloud geometric and optical properties (as earlier
studies cited above). But our flux differences are not biased due to the ‘‘flat/black plate
approximation’’ but about cloud structure. Moreover, and contrary to earlier studies,
atmospheric gases are considered (primarily absorption by water vapor). Presence of

Fig. 15. Bias between fluxes of bumpy and flat clouds computed with 3D SHDOM in both cases as a function

mean optical depth and mean geometrical thickness for two cloud base altitude (Zb = 1, 4 km). Cloud Cl2

(C= 58%) and distribution 2 (a= 0.7) are considered.
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absorbing gas tends to reduce scattering effects (Takara and Ellingson, 1996). Therefore,
quantitative comparison between our results and earlier results is not straightforward, even
though some qualitative comparisons can be done (cloud inhomogeneity effects on their
thermal radiative properties are sensitive functions of cloud coverage, of cloud base
altitude and of cloud geometrical thickness).

5. Conclusions and outlook

In this paper, we presented a study of the effects of an inhomogeneous cloud layer with
coverage on its large area-averaged thermal radiative fluxes. Fractional inhomogeneous
clouds are generated for the first time by the ‘‘tdMAP’’ model. This new stochastic model
shows great flexibility of use and is able to generate the complex self-similar structures of
overcast and broken clouds. We show that tdMAP is suitable for simulating the 2D internal
horizontal fluctuations of cloud optical properties observed in stratocumulus (quasi-
lognormal distribution of optical depth, absolute spectral slope exponent around
b = 1.6). The tdMAP model provides also an elegant method to simulate gaps between
clouds by ‘‘pruning’’ the branches of the encoding tree with control by a Bernoulli
parameter. Contrary to the bounded cascade process, tdMAP cloud structure does not have
artificial dyadic structure and large increments between two consecutive cloud pixels.
Moreover, edges of clouds are smooth (optical depth is generally small at the cloud
periphery and larger within the cloud), which is not the case of the cubical or cylindrical
cloud shapes used in previous studies.

Comparisons were done between fluxes of inhomogeneous clouds computed with 3D
method (SHDOM model) and those computed by PPH, FCPPH and IPA methods. For
better comparisons, fluxes computed by PPH, FCPPH and IPA methods are made also
with SHDOM model using the appropriate settings to shut down horizontal transport.
Biases thus estimated between 3D fluxes and PPH, FCPPH or IPA fluxes are only due to
the drawback of the considered method.

Analysis of our results shows that thermal radiative fluxes depend primarily on cloud
fraction, mean optical depth, mean geometrical depth and cloud base altitude. Horizontal
fluctuation of the ‘‘within’’ cloud optical depth has a limited thermal radiative impact, for
overcast cloud as well as broken cloud, and contrary to previous findings for solar
wavelength (Cahalan et al., 1994a,b; Szczap et al., 2000a). The main cloud inhomogeneity
parameters for thermal radiative transfer is the fractional cloud coverage parameter.
Parameters relating to cloud distribution in space and cloud size distribution were not
considered in this study, but should also be taken into account in the parameterization of
the thermal radiative effects of inhomogeneous clouds (Takara and Ellingson, 1996; Han
and Ellingson, 1999). Their effects on thermal radiative transfer for the more realistic and
complex tdMAP clouds (compared to geometrical cuboids or cylinder clouds) have yet to
be studied. This task will be the focus of a future study.

In this paper, we also compared inhomogeneous flat-top and bumpy-top clouds. Cloud
top bumps are made by prescribing empirically justifiable relations gleaned from the
literature between local optical depth and local geometrical thickness. We showed that
effects of cloud bumps are rather small, especially when mean geometrical depth is smaller
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than 1 km. This result is encouraging. Indeed, in a GCM, the atmosphere is divided into
numerous layers, 20–100, depending on GCM vertical resolution. Therefore, clouds layers,
in the troposphere, are rather thin. This means we can simplify a bumpy cloud layer by a flat
top cloud layer with same mean geometrical depth as the GCM layer were they occur.

We demonstrated that the PPH method is not suitable to compute thermal inhomoge-
neous cloud fluxes, except for overcast clouds. FCPPH method and, more surprisingly the
IPA method, are also not suitable to compute thermal inhomogeneous flat-top cloud
fluxes, even though FCPPH and IPA biases are significantly smaller than their PPH
counterparts. Both these methods lead to a bias of around F 5 W/m2 in upward or
downward fluxes. This already non-negligible bias will be larger if the ground temperature
is larger than the 288.1 K used in our work.

In future work, radiative transfer simulations will be done in solar wavelengths and
across the whole thermal spectrum to investigate whether FCPPH and IPA biases remain
on the complete (solar and thermal) spectrum. Also the fractal properties of tdMAP clouds
will be examined. Finally, the case of multi-layer clouds will be investigated. Some
preliminary results show that distance between cloud layers has to be considered in
addition to the coefficient of correlation of the fractional cloud coverage between these
cloud layers. All these sensitivity studies are necessary to determine the relevant cloud
parameters in order to develop more accurate parameterizations of the effects of
inhomogeneous cloud on radiative properties. Such efficient yet accurate radiative transfer
parameterizations may be based, for example, on neural networks trained on many 3D
simulations.
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